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Abstract 

A group of elementary associativity operators is introduced so that the bracketing graphs which 
are the skeletons of Stasheff’s associahedra become orbits and can be constructed as subgraphs 
of the Cayley graph of this group. A very simple proof of Mac Lane’s coherence theorem is 
given, as well as an oriented version of this result. We also sketch a more general theory and 
compare the cases of associativity and left self-distributivity. 

0. Introduction 

The general purpose of this paper can be summarized as the introduction of some 

algebraic structure on the faces of Stasheff’s associahedra which are CW-complexes 

whose faces correspond to the complete bracketings of a given string (see [12]). We 

introduce a “structure group of associativity” gd so that the (skeletons of the) as- 

sociahedra become orbits for some natural action of %d - exactly like the usual reg- 

ular polyhedra are orbits for the action of (the finite subgroups of) the orthogonal 

groups O(n). The main point is that the group & shares many algebraic properties 

with Artin’s braid groups B,, a similarity which actually extends in part to the general 

case where associativity is replaced by any another algebraic identity. 

In former papers ([2, 4, 51) we have developed an analysis of the left distributivity 

identity in terms of a structure group that captures the geometry of this particular 

identity. This analysis was used to prove the decidability of the corresponding word 

problem and to describe the free objects of the variety. Our aim is to show that a similar 

approach is relevant in the case of other algebraic identities. In the present paper we 
shall concentrate on the case of associativity, which is both very natural and well known 
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but also significantly different and technically easier than left distributivity. Again a 

“structure group” yd will be involved, and we shall show that the algebraic properties 

of this group reflect and somehow explain the geometric properties of the associativity 

identity. In this framework, which can be seen as a variant of the categorical approach 

of [I I], Mac Lane’s coherence theorem for associativity can be reformulated as the fact 

that the relation arising from the pentagonal identity constitutes, together with other 

“universal” relations, an exact presentation for the group & . 

We obtain a direct and very simple proof for the pentagon theorem which relies on 

the possibility of generating by associativity any given term from a sufficiently large 

string of characters (the characteristic sequences of a term). With more work one also 

obtains an oriented version of this theorem where the rewrite rule x(yz) -+ (xy)z 

replaces the symmetric relation x(yz) = (xy)z. This improved result claims that the 

pentagon relation is still sufficient to generate all relations in the oriented case. We also 

show that the structure monoid Jz’d corresponding to oriented associativity embeds in 

the group @d . It follows that the (skeletons of the) associahedra are faithful orbits 

under the natural action of J&J. This provides a description of these graphs as the 

closure of a finite set of initial edges under some simple algebraic operation (reduction 

with respect to a right complement), which easily implies that this graph is topologically 

a sphere. 

These properties are established using the particular form of the relations defining the 

group $d , specially the fact that these relations admit a right complement (see [6]) and 

that this complement satisfies some coherence condition which reflects a deep technical 

similarity between the group @.d and Artin’s braid groups B,. It is remarkable that the 

coherence of the complement, which is fimdamental in the present case of associativity, 

is equally crucial in the case of left distributivity. It has seemed useful to establish 

a parallel between these cases. This should in particular make the latter one more 

accessible. 

The paper is organized as follows. The first section introduces the structure group of 

associativity. Section 2 gives the proof of the pentagon theorem and its oriented version. 

Section 3 compares the cases of associativity and left distributivity and emphasizes the 

common features. In Section 4 finally we sketch a more general theory, and show that 

a significant part of the crucial coherence property used in Sections 2 and 3 can be 

obtained by a uniform geometrical argument. This considerably lowers the length of a 

proof which a priori is very long. 

1. The elementary associativity operators 

In the sequel C is an infinite set whose elements are called variables and are typically 

denoted by X, Y, 2. The set of all terms constructed using the variables in C and a 

binary operator *, i.e., the free binary algebra generated by C, is denoted by Y(C). We 

use P, Q, R, . . . for the elements of F(C). Then the associativity identity is expressed 
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by the equality 

X*(Y*Z)=(X*Y)*Z (4 

Definition. The relation =.d is the least congruence on r(C) that contains all pairs 

(Q*(R*W, (Q*W*O 

In other words, the quotient y(C)/ =d is the free semigroup generated by C. Our 

task is to describe the congruence =,d. To this end we introduce a partial operator s2d 

on y(C) as follows: the term P belongs to the domain of sZ& if and only if P can 

be expressed as Q * (R * S), and, in this case, s2d maps P to the corresponding term 

Q * (R * S). It is clear that C2.d maps every term to an =.d-equivalent term, and that, 

more generally, two terms P, P’ are =&-equivalent if and only if there exists a finite 

sequence of terms from P to P’ such that every term is obtained from the previous 

one by applying either s2.d or s2,’ to some subterm. 

Precisely we wish to keep track of the subterms the operators Od or Sz,’ are applied 

to. It is convenient to consider the terms of 5(C) as rooted binary trees the leaves of 

which are variables. We address a point in such a tree by a finite sequence of O’s and 

l’s that describes the path from the root of the tree to the considered point: 0 means 

going to the left, 1 means going to the right. We denote by S the set of all addresses 

(i.e., the free monoid generated by 0 and 1 ), and by A the empty address. Elements 

of !5i are denoted x, y, . . . . 

Example. In the term (X* Y)*Z, the address of the variable X is 00, while the address 

of Y is 01. 

With these notations it should be clear that a term P belongs to the domain of the 

operator 52.d if and only if the point 11 is either the address of a variable of P, or is 

a strict prefix of such an address. 

Definition. For x in s, a&x) is the partial operator on 5(C) corresponding to ap- 

plying 52d to the subterm whose root has address x. 

Example. Let P be the term X * (X * (X *X)). Then C&J, which is also Q&(A) by 

construction, maps the term P to the term (X *X) * (X *A’), while !2,d( 1) maps P to 

the term X * ((X * X) *X). 

Similarly we introduce for every point x in S a disjoint copy denoted x-l, and define 

a,&(~-‘) to be the converse operator S~,,J(X)-‘. Now let us extend the notation sZ& 

to finite sequences of points and inverses of points, so that sL.d(or - fi) is the reverse 

composition of G?,(a) and &(p) (apply !?&a) first and then !&(/3)). For instance 

C&(00- - 1) is the reverse composition of 52,&00)-’ and Q&l). 

Definition. The monoid A” (resp. 9d) is the monoid generated by all operators sZ&x) 

with x in s (resp. in S U S-l). 
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With our notations the elements of J%& are exactly the operators Q,(u) with u a 

finite sequence of elements of S, i.e. an element of the free monoid S* generated 

by S, and the elements of 9.. are the operators Q&a) with a a finite sequence of 

elements of S u S’, i.e., an element of the free monoid (S U S-I)* generated by 

S U SW’. Practically we shall use . for denoting the monoid product (concatenation) 

of S* and (S U S-l)*, and E to denote their unit (i.e. the empty sequence), not to be 

confused with the length 1 sequence /i that consists of the empty address. It should 

be clear that the following holds: 

Lemma 1.1. Two terms P, P’ in F(C) are =,d-equivalent if and only if there exists 
a sequence CC in (S U S-’ )* such that the operator Q,(a) maps P to P’. 

Remark When the partial function Q,(a) is viewed as a set of pairs of terms (the 

set of all pairs (P, Q,d(a)(P))), it becomes exactly the set of all instances of some 

pair (Q,K;), defined as the pairs obtained from (Kz, K;) by applying a substitution, 

i.e., by replacing each variable by a given term (depending on that variable). Clearly 

each pair (Kz, K[) is a consequence of the associativity identity (&), and actually the 

monoid G9d can be seen as a monoid structure defined on the set of all consequences 

of (d) (see [3] for some additional details). 

Our purpose is to study the monoids J& and 9d. Observe that 2& is “nearly” 

a group: the operator Q.~(x)-’ is a near-inverse of Q&x) in as far as the product 

Q&(x -x-l ) is the identity of the domain of Q&x). Of course it could be claimed that 

the “real” nature of 2?& is a groupoid structure in the language of categories. However, 

it will be convenient to keep on using here a purely algebraic language which is more 

appropriate to describe the subsequent constructions. 

Definition. Assume that f and g are partial mappings whose domains intersect; f and 

g are compatible, denoted f N g, (resp. strongly compatible) if there exists at least 

one element x in the intersection of the domains of j’ and g such that f and g agree 

on x (resp. if f and g agree on every element in the intersection of their domains). 

For instance the above remark about K&‘(t) being a near-inverse of O&x) means 

that the operators Q&x .x-l) and Q&(s) (i.e., the identity of Y(Z)) are strongly 

compatible. Actually in the present special case of associativity, the facts that the same 

variables appear on each side of the identity (d) and that each one appears only once 

imply (see [3]) that the compatibility relation coincides with the strong compatibility 

relation, and that these relations are congruences on 9d. Then the quotient monoid 

?9&/- is a group. 

1.1. The relations in A!& and 9.. 

Owing to Lemma 1.1, we can consider that a complete description of the monoid 9d 

constitutes a convenient achievement for the initial task of studying the equivalence =d, 
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and therefore of describing in some sense the geometry of associativity. So the point 

is to establish a presentation of the monoids JZd and ‘29d in terms of their generators 

L’&(X) and sZ&x-‘), that is to provide an exhaustive list of the relations that connect 

the operators sZ&x) one to each other. 

The case of the near-inverses fid(x-‘) is rather trivial and we concentrate on the 

positive relations that involve only the operators ad(x) with x in S. There are two 

kinds of relations. The first ones are “general” relations which have little to do really 

with the specific case of associativity. A first family appears when operators associated 

with nonoverlapping subterms are involved. The basic case is the one of sZd(O) and 

sZ,d( 1): clearly the result of applying to a term a,(O) first and then !2&( 1 ), or the 

converse, leads to the same resulting term. More generally, if we say that two addresses 

x, y are orthogonal if neither x is a prefix of y nor y is a prefix of x, the relation 

holds for every pair x, y of orthogonal addresses. 

The second type of general relations appears when operators associated with “com- 

pletely nested” subterms are involved. For instance 52&(/1) maps Q*(R*S) to (Q*R)*S. 

Now if some operator 0&(a) maps Q to Q’, &(Ocr) maps Q * (R *S) to Q’ * (R * S) 
_ we denote by Oa the sequence obtained from ~1 by adding an initial 0 to each factor 

of CY -, while sZ&OOa) maps (Q * R) * S to (Q’ *I?) * S. So we certainly have 

Q,~(Ocr * A) = l2&&(/1- OOa), 

a relation that just expresses that the subterm which had address 0 before Q,(n) was 

applied has address 00 after C?,(n) has been applied. Similar relations appear when 

an arbitrary point z replaces LI. So, the relation 

!2~(ZO.i *z) = Q&z -zOOx) (1) 

holds for every z and x in S. The same argument works for the subterm at 10, which 

is moved to 01 by a&,4), and for the subterm at 11, which is moved to 1, leading 

to parallel relations 

s;z~(ZlOX *z) = O&z *zOlx) (2) 

O&(Zl lx *z) = Q&z - zlx) (3) 

When we consider the above relations, we see that, for every pair (x, y) in s x S, 

there exists exactly one relation of the form 

Qdx * . . .) = Q_,g( y * . . .) 

except in the case of the pairs (z,zl ) that corresponds neither to nonoverlapping sub- 

terms nor to completely nested subterms. The algebraic treatment of the monoid J&I 

that will be subsequently applied suggests (or, at least, a posteriori legitimates) to 
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completing our list with relations of the same type for the pairs (z,zl ). This, however, 

is easy, and a direct verification gives, for every z in S, the relation 

Qd(Zl *z - ZO) = !&(z -z) (4) 

i.e., precisely the pentagon relation. In contradistinction with the other relations that 

automatically arise from our way to introduce the generators G’&(x), the equalities (4) 

are specific relations that we can only record and not explain by general reasons. Very 

informally we could think of the other equalities as the “free” part of the construction 

while the equalities (4) represent the only really “nonfree” part. 

The nontrivial question is whether the above list of relations generate all relations 

of jtd. It will be convenient to introduce the monoid admitting these relations as a 

presentation (and therefore of which J& is a quotient by construction). 

Definition The relation -2 is the congruence on S* generated by all pairs of the 

following five types: 

(zOx.zly ) zly.zOx ) 

(Z0X.Z) z*zoox ) 

(ZlOX~Z) z*zOlx ) 

(Zl1X.Z) z*zlx ) 

(zl.z*zO, z*z) 

and E& is the congruence on (S U S-’ )* geErated by E$ together with all pairs 

(z * z-1 , E) and (z-i - Z,E) for z in S. Finally J&? is the monoid S*&,, and gd is 

the group (S U S-’ )*Fd. 

By construction, we have: 

Lemma 1.2. (i) For any positive sequences u, v in S*, u -2 v implies Q&u) = 

Q&(v); 
(ii)for any sequences CC, /I in (S U S-l)*, CIE&~~ implies that Q&IX) and s2&) 

are strongly compatible operators. 

We shall now turn to the converse implications. The first one constitutes a form of 

Mac Lane’s theorem in [ 111. Actually these converse implications will show that the 

monoids J&_ and J& are isomorphic, as well as the groups 9&/- and %d . 

2. The characteristic sequences of a term 

In order to prove that the relation s2Jcr) = Q&p) implies a--d/3, we need some 

method for converting the hypothesis, which is a “semantic” statement involving the 

action of the operators Q&x) on the terms into a purely “syntactic” statement. The 
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trick we use is to construct in the syntactic world of !53* a copy of the terms so that 

the action of the operators 0&(x) has the wished syntactic counterpart. 

This, however, is very easy in the case of associativity. We restrict to terms involving 

only the variable X, the set of which is denoted by F(X). We denote by Xc”) the 

term X * (X * (. . . (X *X) . .)), n times X, and, for P in F(X), we write IPI for the 

number of occurrences of X in P. We start from the following trivial statement: 

Lemma 2.1. For any term P in Y(X), the equivalence X(1”) =.d P holds, as well as 
the equivalence X(IPl+“) =d P *Xc”) for any n 2 1. 

By Lemma 1.1 there must exist sequences of addresses that describe the above 

equivalences. The idea is to introduce for every term P such a “characteristic sequence” 

x&(P) with the property that the operator sZ&x~(P)) constructs the term P from the 

basic term X(I’I), and then to use the sequence x&(P) as a syntactic version of P. It is 

uneasy to obtain, toward an inductive construction, a definition of a sequence x&Q*R) 

in terms of the sequences x&(Q) and x&(R) only. But everything becomes easy when 

using a second type of characteristic sequence associated with the second equivalence 

in the above lemma. 

Lemma 2.2. Let xd and x’d be the mappings of r(X) into s* inductively dejined 
by the formulas x&(X) = XL(X) = E and 

xdQ *RI = x’dQ> - 1xdR), 
x%Q *RI = x’dQ> - lx:&) - A. 

Then, for every term P and every positive integer n, the operator &,&J(P)) maps 
X(I’I) to P, and the operator sZ,(x’&P)) maps X(IPl+n) to P *Xc”). 

The proof is an obvious induction. Now assume that the operator SzJu) maps the 

term P to the term P’. Then both the operators C&&d(P’)) and C&&.&P) . u) map 

the term X(I’l) to P’. So if the converse of Lemma 1.2 is true, we can expect that the 

sequences x&P’) and x&(P) - u be CL-equivalent. Similarly both C&&‘&P’)) and 

sZ_&‘.d(P) . 0~) map the term X (IpI+l) to P’ *X, and we can expect a parallel EL- 

equivalence. Now this is just a matter of verification involving the defining relations 

of G$. 

Lemma 2.3. (i) Zf u belongs to s* and fi,d(u) maps P to P’, the equivalences 

xAP’)+&4(P) * 24 and x$(P’)->xId(P) - Ou 

hold in s*. 
(ii) Similarly if@ belongs to (s u S-’ )* and Q&(a) maps P to P’, the equivalences 

x,d(P’)--SQ x&(P) - a and x$(P’)-d x’d(P) - Oa 

hold in (S u S-l)* 
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Proof. (i) Using induction on the length of the sequence u, we may assume that u 

reduces to a single point, say, x. We prove the formulas inductively on the length of x 

(as a sequence of O’s and l’s). We begin with the case x = LI. Assume that P is 

Q * (R * 8). Then P’ is (P * Q) *S, and the definitions together with relation (3) yield 

x.&P’) = x’&?)- lxL(R)*n- lx%cM) 

-2 b(Q) - lx:cM) - 1 lx.&) . n = x.d’> - A 

Similarly, using relation ( 1) we have 

x.&“) = x%Q> - lx%W - n - lx%S> - A 

+&(Q) - 1$&(R) - llx’&S) - A - A 

+&(Q) - 1x:&R) - 11x$(S) - 1 - A - 0 

= x%P) * 0 

Now assume that P is Q *R and x is Oy. Then P’ is Q’ *R, where B.&y) maps Q 

to Q’. By induction hypothesis, we assume x,&Q’)->x&Q) - y and x’&Q’)=L& 

(Q) - Oy. Then we have 

~0’) = xdQ’ * W = x’dQ’> - lo&) 

-:,x%Q> - OY - lx.dR) 

=$xXQ> - 1xdR) - OY = ~4’) - x 

by relation (I), and similarly 

x$(P’) = x&Q *RI = x%Q’> - lx:dR) - n 

by relation (1). This gives the desired formulas, and the argument is parallel is the 

case x = lz using relations (2) and (3). 

(ii) If Q&(x) maps the term P to the term P’, then the operator !&(x-‘) maps P’ 

to P. So point (i) immediately gives the formulas of (ii) in the case where M reduces 

to a unique factor x-‘. Then the induction is straightforward. 0 

The previous computation is sufficient to complete the analysis in the unoriented 

case, i.e., to describe the relation between qd and ?d . Because the domain of the 

operator L?,(a) is always nonempty, we may state the following 

Proposition 2.4. For any sequences rx, p in (!!5 U S-l)*, the operators Cl&(a) and 

sZ&fl) are compatible if and only if they are strongly compatible if and only if the 

equivalence CIE,~ /I holds. 
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Proof. Assume that Qd(a) and sZ&?) both map the term P to the term P’. By 

Lemma 2.3(ii) both sequences c( and /I are =.d -equivalent to xd(P’) - x.&(P)-‘. 0 

The oriented case, i.e., the case of J& and 2 .d where we restrict to only one di- 

rection of associativity rewriting, is more interesting. At the present point, the formulas 

of Lemma 2.3(i) only yield a partial result. 

Lemma 2.5. If u, v are positive sequences in S*, and the operators Q&u) and Q.&(u) 
are compatible, then there exists a positive sequence w satisfying w - u-;w - v. 

So we are left with the question as to whether left cancellation is allowed in the 

monoid .&& This question will be solved using the special form of its defining 

relations. As we have pointed out, these relations have the property that, for any pair 

of distinct generators (x,Y), there exists exactly one relation that is a pair whose left 

member begins with x and right member begins with Y. More precisely, let Cd be the 

mapping of s2 into s* defined by 

,E if x and y are equal, 

X if x and y are prefix-incompatible, or x is yl, 

or x0 is a prefix of y, or xl is a strict prefix of Y, 

C.&, y) = x - x0 if y is xl, 

yooz if x is yOz, 

ylOz if x is yOlz, 

~ YlZ if x is yllz. 

Then the congruence -2 is exactly the congruence on S’ generated by all pairs 

( x - Cd(Y4) 2 Y * C.&Y)), 

which we shall express by saying that Cd is a right complement for z$. A typical 

example of a congruence associated with a right complement is braid equivalence 

used to define Artin’s braid groups B,. It is shown in [6] that Garside’s treatment of 

the groups B, can be extended to arbitrary groups admitting a right complemented 

presentation, provided that the complement satisfies some combinatorial properties. We 

shall presently prove that the complement Cd above satisfies these requirements. 

Associated with the complement Cd is a notion of word reduction in (s U S-l)*. 

Since the equivalence x . C<&y,x)=$ y . Cd(y,x) holds for every x, y in s, so does 

the equivalence 

Y -’ . x-.&C&(X, y) . C.&,x)-‘. 

We say that the sequence a reduces to the sequence /I if /I can be obtained from x 

by iteratively replacing patterns of the form y-l - x by the corresponding patterns 

C,4(~, y) = C&y,x)-i. It is clear that the irreducible sequences are the sequences of 
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the form u - v-’ with u, v positive sequences, i.e., sequences in s*. It not obvious that 

any sequence should reduce in a finite number of steps to an irreducible sequence, but 

it is not hard to see that reduction, when it terminates, leads to a unique irreducible 

sequence. We define the (a priori partial) mapping Cs of !3* x s* into S* by the 

condition that, for u, v in S*, C$(U, v) - C~(v,u)-’ is the irreducible sequence to 

which the sequence v-’ . u reduces. By construction the mapping C’ extends the 

mapping Cd, and constitutes the appropriate extension of Cd to finite sequences as in 

particular the equality 

holds for every finite sequence u, v, provided that the complements are defined. 

Definition. The right complement Cd is coherent if the equivalence 

c;(c.&, Y), C&, Y))--$G(cd(-Gz)? Cd(YJ>> =@(XYY2) 

holds for every x, y, z in s. 

The coherence is exactly what is needed to guarantee that the closure under comple- 

ment of the initial arrays x, y, z in the Cayley graph of J&? leads to a well-defined 

unique terminal point, which will be the least common multiple of x, y and z. The 

analysis of [6] yields 

Lemma 2.6. Assume that the equivalence relation E$ has the property that, for 
any u in S*, the lengths of the sequences u’ satisfying U’E>U have a$nite supremum, 

and moreover that the complement Cd is coherent. Then the monoid 4-d admits 
left cancellation. 

The finiteness condition above is easy, for U’Z~U implies 0&u’) = Q&u). Define 

the weight of a term P (viewed as a word) as the sum of the ranks of the opening 

brackets in P, where the rank of a character is just the number of characters before it. 

Every operator Q&x) strictly lowers the weight of any term it is applied to, and there- 

fore if Q,(u) maps P to P’, the length of u, as well as the length of any sequence u’ 

verifying Q&u’) = Q&(u), is bounded by the weight of the term P. 
We are left with the verification of the coherence condition for Cd. This is a priori 

a brute force argument consisting in an exhaustive examination of the various cases 

arising from all possible mutual positions of the points x, y, z. Actually the construction 

of the complement Cd implies that a great many cases are automatically settled. This 

will be exposed in Section 4 below. In the present case, this implies that it suffices 

to verify the equivalences a( 1, y, /i), %?( y, /1,1) and 9(/i, 1, y) when 0 is a prefix 

of y or 1 is a strict prefix of y. Observe that simultaneously verifying the three above 

equivalences only require three Cd-reductions (and not six). It is enough to distinguish 

five cases. 
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0 00 
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1 10 

Fig. 1. Coherence of the complement C.01, case of {A, 1,1 I} 

First assume that y has the form Oy’. The formulas are 

GVXOY’, 1 ), C.&A, 1)) = 0oo.Y’ = C!Xc&Y’, /i>, C&d( 1, A)), 

c~(C.~(l,n),C.,(Oy’,n)) = n = ~~(c.,(1,OY’),c~,(n,OY’)), 

C&X~,0Y’)&(1,0y’)) = ‘4 - 0 = C;(c&(n, l),CG#(Oy’, 1)). 

If Y has the form lOy’, one obtains similar equalities where only the first value is 

modified and is now 001~‘. The result is the same if y has the form 110~’ (the 

first value becomes 01 y’), or the form 111 y’ (the first value is 1~‘). The last case 

is for y = 11. Again similar equalities are obtained, with value n - 0 - 00 for the 

first two complements. The latter case is the only really critical one (although very 

simple indeed). The associated reductions are illustrated in the Cayley graph of Fig. 1 

whose meaning should be clear: reduction consists in “closing” the open patterns made 

of two arrows with the same origin by appending the new arrows prescribed by the 

complement C&d. Observe that in the case of this simple complement, the desired 

equivalences happen to be merely equalities. Nevertheless, they are not trivial, and 

they definitely express some intrinsic property of associativity. 

Owing to Lemmas 2.4 and 2.5 we have obtained 

Proposition 2.7. Zf u, v are positive sequences in .S*, and the operators Q&u) and 

Q,,(v) are compatible, then us+,v holds. 

In other words, the monoids J& and A@,, are isomorphic, i.e., the relations listed 

in Section 1 do form a presentation of the monoid J&. 

Additional results about the congruence -$ and the monoid JZ?~ can easily be 

obtained. For instance, reductions associated with the complement Cd always have to 

terminate. Let CI be any sequence in (s U S-’ )*, and P be any term in the domain of 

the operator Q&P), which we know cannot be empty. Let ~1, ~2, . . . be an enumeration 

of the distinct positive sequences u that have the property that CI reduces to some 

sequence admitting u as an initial segment. By construction, reduction does not modify 

the domain of the corresponding operators, so the term P belongs to the domain of 

each operator Qd(z+). It follows that the lengths of the sequences Ui are bounded above 

by the weight of the term P, and therefore that there are only finitely many of them. 



70 P. Dehornoy I Journal of Pure and Applied Algebra 111 (1996) 59-82 

This in turn means that the reduction of CI has to terminate. By [6], this implies that 

the monoid ~4& is right regular. 

Next the operator Sz, -’ is a symmetric copy of the operator ad. It follows that 

the monoid similar to J&‘& constructed from Sz,’ is exactly the opposite monoid 

of A&, and that this monoid is still associated with a coherent right complement 

obtained from C,d by exchanging the roles of 0 and 1. In the terms of [6] this 

means that the congruence Z$ is also associated with a coherent left complement, 

and this implies that the monoid J& admits right cancellation. Thus the situa- 

tion of the monoid JS& and of the group 59d is exactly the one of the braid 

monoids P,, and the braid groups B, with respect to the complements. In particular, we 

have 

Proposition 2.8. The congruence =$ is exactly the restriction of the congruence --d 

to positive sequences. The monoid A%‘& embeds in the group %d , and every ele- 
ment of !?d can be expressed as the (right, or left) quotient of two elements of 

A.. 

According to the double reduction procedure of [6], the word problem for the con- 

gruence ~2 is decidable, and actually has a polynomial complexity with respect to 

the lengths of the considered sequences. Incidentally, a unique normal form for the 

elements of gd is described in [3] using another approach. 

The associahedra 

There is a close connection between the Cayley graphs of the group %d and the 

associahedra. In Stasheff’s original paper [ 121 where they were used to emphasize the 

obstruction to the existence of an associative law in certain spaces, the associahedra 

are constructed as CW-complexes whose faces correspond to bracketings of a fixed 

string. Like in [S] we shall consider here the skeletons of these CW-complexes, i.e., 

the graphs whose vertices correspond to the faces of the CW-complex, and the edges 

connect faces that have a common boundary. 

Definition. For any term P, the graph Kp (resp. the oriented graph Kg) is constructed 

as follows: the vertices are the images of P under some operator in G!Zd (resp. in &‘d) 

and an (oriented) edge connects Q to R if some transformation n,(x) with x in SUS 

(resp. in .S) maps Q to R. 

Fig. 2 shows two such (oriented) graphs. Observe that each graph Kp contains exactly 

one vertex, say Q, of the form Xi *(X2 * (- . + (X,_ 1 . . . X,) . . .)), and that for such a term 

the graph Ke, which is also Kp, is nothing but the unoriented version of the oriented 

graph K$. By construction, the graph Kp is the 2-skeleton of the associahedron of 

the term P as defined in [12], and considering the oriented version K: amounts to 

introducing some orientation on this associahedron. 
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+ Fig. 2. The onented graphs Kx,4j and K&, 

By construction, the group %d and the monoid 2 d operate (a partial operation) 

on the graphs Kp via s2d. This gives a projection of the Cayley graph of %d and 

J.@& onto these graphs. The nontrivial result is that this projection is injective. This is 

exactly what Propositions 2.4 and 2.7 tell. 

Proposition 2.9. Let P be any term in F(C). 
(i) The partial action of the group gd induced by s1d is transitive and faithful 

on the graph Kp. 

(ii) The partial action of the monoid &d induced by sZ& is faithful on the oriented 
graph Kg. Actually the latter one is exactly the Cayley graph of the subset of ,I”e, 
made by (the classes of) the sequences u such that the term P belongs to the domain 

of Q,(u). 

Proof. By definition, the graph Kp is the orbit of P under 3d. Since two operators 

sZ~d(cc), 52,&a’) agree on some particular term if and only if they agree everywhere if 

and only if c(=~cz’ holds, the action becomes faithful when one collapses %d to 3,d 

The argument is similar for A.. 0 

We deduce a purely abstract (or syntactic) construction of the (oriented) graphs Kp. 

Corollary 2.10. Assume that x1, . . ., x, are the addresses such that the term P lies in 

the domain of the operator Qd(xi). Then the oriented graph Kpf is the closure under 
Cd-right reduction of n initial arrows labelled x1, . , ., x,,. 

Proof. Let Kf, be the above subgraph of the Cayley graph of J&. By faithfulness 

of the action of J&Z&, we may identify KL with its projection on Kg, and the point 

is to show that Kf, covers all of KG. We claim that, for every vertex Q of Kj,, all 

successors of Q in Kg belong to Kk. By definition, the property is true for the initial 

vertex P, and it suffices to show that the property holds for the immediate successors 

of Q when it holds for Q. Assume that R is the image of Q under a&y), and that 
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Yl, . . . . yq are the points in S such that the term Q belongs to the domain of St,d(yj). 

A direct verification shows that the points z such that the term R belongs to the domain 

of G,&(z) are exactly the first factors of the complements Cd( yt, y), . . ., C&yq, y) 

which are nonempty, and this is exactly the needed fact. 0 

For instance, the graphs of Fig. 2 show the construction in the cases of the terms 

Xt4) and Xc5) as the closure, respectively, of the initial edges {ii, 1) and {/i, 1,ll) 

(printed in bold) under Cd-reduction. Observe that this construction shows that the 

latter graphs when viewed as simplicial complexes are, respectively, a l-sphere and 

a 2-sphere. More generally, the coherence of C,d implies that the closure of n initial 

edges is topologically an (n - I)-sphere. 

Remark We have seen that the coherence of the complement Cd implies that the 

graphs Kp are subgraphs of the Cayley graph of J&&. Conversely, the faces of these 

graphs are commutative by construction, so that the property for the Cayley graph of 

being a union of such graphs essentially implies the coherence of the complement. 

Hence the existence of embeddings of the graphs Kp into the Cayley graph of J&I 

and the coherence of the complement C,, are essentially equivalent properties. 

3. Self-distributivity versus associativity 

We now sketch a comparison between the previous case of associativity and the case 

of the left selfdistributivity identity 

X*(Y*Z)=(X*Y)*(X*Z). (9) 

We shall use in the sequel the same notations as previously, just replacing the subscripts 

“&” by “9”. The study of that case was motivated by the fact that results like the 

decidability of the word problem or the concrete description of the free structures were 

missing until recently, or, strangely enough, were available only using some very strong 

logical assumptions (c.f. [lo]). Answering such questions is of course straightforward 

in the case of associativity. A complete analysis of distributivity appears in [4], and 

we just wish to emphasize here the common features and the discrepancies between 

both cases. 

So =s will be the congruence on Y(C) generated by all pairs 

(Q*(R*S), <Q*R)*<Q*V>> 

and SzB will be the partial operator on Y(Z) which maps every term of the form 

Q * (R * S) to the corresponding term (Q * R) * (Q * S). The analog of Lemma 1.1 

clearly holds, and we have to find the relations between the operators Wg(x). Again 

we find some general relations, namely 

&?(zOx * zly) = sz$@(zly - ZOX) (1) 
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(“nonoverlapping” case) and 

szy(zOx * z) = L?g(z - zoox * ZlOX) 

QC&zlOx - z) = sz& * ZOlX) 

Qs(zl lx * z) = szg(z * zl lx) 

(“strictly nested’ case). The remaining case is the one of z and zl, and we find 

&(zl -z - zl * ZO) = Qg(z * zl * z) 

a specific relation of distributivity where a heptagon replaces Mac Lane-Stasheff’s 

pentagon. 

As in Section 1, we introduce the congruence E& on S* generated by the pairs of 

positive sequences appearing in the above relation, and its completion ~3 for arbitrary 

sequences, and let J& and @g be the associated monoid and group. The analog of 

Lemma 1.2 holds, and we turn to the converse question of whether the compatibility 

of Q,(a) and sZ&?) implies the z&-equivalence of c1 and fl. 

The problem again is to define inside (S U 9’ )* a syntactic copy of the terms 

of ,F(X). The quotient F(X)/ =g, i.e., the free left distributive structure with one 

generator, is a much more complicated structure than F(X)/ =d, which is the free 

semigroup with one generator, and therefore we cannot expect a simple result like the 

one of Lemma 2.1. Nevertheless, it happens that there still exists a way of generat- 

ing every term in F(X) from some canonical simple terms, actually again the right 

powers XC”). 

Lemma 3.1. For any term P in Y(X), the equivalence X(“) =g P*X(“-‘1 holds for n 

large enough. 

This result is effective, and its proof can be converted into the following analog of 

Lemma 2.2. 

Lemma 3.2. Let ~9 be the mapping of Y(X) into (S U SF’)* inductively defined 
by the formulas x&C) = E and 

x&2 *R) = x&Q> . lx&) * A . hdQ>-‘. 

Then for every term P and every integer n which is large enough, the operator 

Q&y(P)) maps the term Xc”) to P *XC”-‘). 

A technically important fact is that the characteristic sequences x9(P) entail in 

general negative factors. This will forbid to directly use them to study the positive 

congruence E,&. Now the main argument remains the same one: if the operator C&(cc) 

maps the term P to the term P’, both &&~(P’)) and Q&x9(P) . Oa) map (for n 
large enough) the term XC”) to P’ *Xc”-‘), and therefore the corresponding sequences 
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are conjectured to be =g-equivalent. This is actually true, which again constitutes a 

nontrivial intrinsic property of the considered identity, here left distributivity. 

Lemma 3.3. If a belongs to (S U S-’ )* and Q,(a) maps P to P’, the equivalence 

X~(P’)s&3(P * Oa) 

holds in (S U Se’)*. 

Now the only conclusion we extract is that, if both !&(cc) and fig(p) map P to P’, 

then both sequences Oa and Og are =g-equivalent to xg(P’) - x3(P)-‘, which is still 

far for proving a=gb. (Observe that exclusively using the sequences x’&(P) in Sec- 

tion 2 would lead to a similar problem.) 

Actually the missing property, namely the fact that OCESO~ implies CES/~, will 

follow from the study of the congruence -& along the lines we sketched in Section 2 

for -2. Indeed, it is really easy to show that the corresponding implication holds in 

the case of positive sequences, i.e., that for u, v in S’ the equivalence OUE&OV implies 

UE&V. The problem is then to obtain for every sequence CI in (s U S-l)* a convenient 

decomposition of the form CE~U - v-l where u and v are positive sequences. This is 

exactly what the reduction associated with a right complement does. Now by very con- 

struction the congruence G& is associated with a right complement Cg, and the point 

is to study the coherence of this complement and the termination of the corresponding 

reductions. 

For the coherence property, we invoke again the subsequent results of Section 4 to 

reduce to the triples (1, y,n). One still has to separate five cases corresponding to y 

being of the form Oy’, lOy’, 1 lOy’, 111 y’ or 111. The latter case is the most intricate, 

and the explicit formulas are 

Fig. 3 illustrates the three involved reductions, and is to be compared with Fig. 1 

that corresponds in the case of associativity. We conclude that the complement C, 

is coherent. The lengths of the sequences u’ satisfying u/=&u are bounded because 

every operator Q&Z) strictly increases the size of any term it is applied to (and no 

operator Qs(u) associated with a positive sequence u may have an empty domain). So 

by Lemma 2.6 we know that the monoid 29 admits left cancellation. 

New ingredients are needed to guarantee that &-reduction have to terminate, for 

the number of distinct terms that can be deduced using distributivity from a given 

term may clearly be infinite, so that the simple argument of Section 2 does not apply 

any more. On the other hand, the length of the complements C&(X, y) may be 2 or 3, 
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simple sequences. The complement of 

two such simple sequences is proved by a direct computation to be a simple sequence, 

and this proves that Cs-reduction always terminates because it preserves the degree 
of the sequences defined as the minimal number of simple sequences or inverses of 

simple sequences the given sequence can be expressed as a product of. The definition 

of simple sequences originates in the existence of a lower common extension for any 

term P with respect to left distributivity: there exists a (least) positive sequence dg(P) 
that is, up to E&- e q uivalence, a right multiple of every x in 55 such that the term P 

belongs to the domain of the operator Q,(x). Simple sequences are the divisors of 

some sequence dg(P). 
Once the termination of C&reduction is known (which means that the monoid J~P 

is right regular), some care is still needed to conclude that Oa=gOfl implies ~~38. 

Under the hypothesis OCE~OP there exist positive sequences u, u’, u, v’ satisfying 

Oa-2Ou . Ov-’ and O@sOu’ . 0~1’ - 1, 

and it is known that OUE& Ou’ implies UE& u’. But the hypothesis u . v-‘=~u’ . v 1-I 

does not imply LE& u’ and VE& v’ in general. At this point the crucial property is given 
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by the coherence of the complement: 

Lemma 3.4 (Dehomoy [6]). Under the hypotheses of Lemma 2.6, the equivalence 

u * v -I-@ . fJ ‘-’ implies the existence of positive sequences w, w’ satisfying 

u - W~~U’ * w’ and v - WE&V’ * w’. 

Then from Ou - Ov-‘-30~’ - Ov’-1 we deduce Ou . WELOU’ . w’ and Ov . WE& 

Ov’ . w’ for some w, w’, which easily leads to u . WI =& u’ - w’l and v - WI=& v’ - w’l 

for some wi, w{, and therefore to u - v-‘zgu’ . v/-l, yielding the desired result: 

Proposition 3.5. For any sequences X, p in (S U S-l)*, the operators C&(M) and 

Q&j?) are compatible if and only if their domains are nonempty and the equiva- 
lence c1=9/3 holds. 

It follows that the monoid 33 quotiented by compatibility identifies with a subset of 

the group @g. This subset is a strict subset because the domain of the operator s2g(cr) 

may be empty, what we mention never happens with the operators Q&a). 

This result settles the problem of describing 99 in a satisfactory way, i.e., shows 

that the relations listed above, and specially the heptagonal one, generate all relations 

between the operators 0&(x). Due to the fact that the characteristic sequences we used 

in the case of distributivity involve negative factors, we cannot directly obtain a corre- 

sponding result for the case of positive sequences. We conjecture that the monoids _&‘g 

and 22 are isomorphic, i.e., that for positive sequences u, v the compatibility of the 

operators Q,(u) and Q&v) (which is known to be merely equivalent to their equality) 

is equivalent to u-&v. 

By the results of [6] it is known that a sufficient condition for the above conjecture 

be true is that the monoid 29 admits right cancellation. Now, like for the case of 

associativity, we observe that the opposite monoid of As is the monoid associated 

with the operators a,‘(x), and therefore appears in connection with “reversed” left 

distributivity identity 

(X*Y)*(X*Z)=X*(Y*Z). (SO) 

Up to reversing the order of all factors, the relations given above in the case of 

the identity (9) hold for (9). In particular, it is easily verified that the congruence 

E& is associated with a right complement C,“. So by Lemma 2.6 the coherence 

of the complement CgO would be a sufficient condition for the monoid zgO to be 

left cancellative, i.e., for the monoid J? 9 to be right cancellative. Unfortunately, this 

condition does not hold, as the following counterexample shows: 

c~“(c,0(A,11),C~0(1,11))=C~,(n,lo - 1 * ll)=OO - 0 -A - 10 - 1 - 11, 

C(;“(C&(A, l),C,“(ll, 1)) = C$“(O * n - 1,11 * 1) 

and the Cs.-reduction of the sequence 1-l - A-’ - 0-l - 11 - 1 does not terminate, so 

that the latter complement does not exist. 
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This does not prove that the monoid _.+? 9 is not right cancellative, but it shows that 

some new argument is needed. To sum up we have 

Lemma 3.6. The following are equivalent: 

(i) The monoids A’3 and A’9 are isomorphic. 
(ii) The monoid A-9 admits right cancellation. 

(iii) The congruence E& is the restriction of the congruence -3 to positive sequences. 

(iv) The monoid A?3 embeds in the group 22. 

About point (iii) above Lemma 3.4 implies that, for positive sequences u, v, the 

equivalence UQYV holds if and only if the equivalence u - wz&v - w holds for some 

(positive) sequence w. 

We leave the previous lemma pending. This means that the question of describing 

the “distribuhedra”, defined in the obvious way, in terms of the Cayley graph of the 

monoid _.&g remains open. By Proposition 3.5 we know that the group $99 operates 

transitively and faithfully on the distribuhedra, but the oriented version of this result 

relies on a proof of the properties of Lemma 3.6. So presently we cannot guarantee that 

no collapse occurs in the passage from the Cayley graph of 29 to the distribuhedra. 

Observe that, excepted in some trivial cases where it reduces to a single point, the dis- 

tribuhedra are always infinite graphs. The approach of [2] introduces a stratification in 

these graphs so that each level is finite. The first level is essentially described (“simple 

extensions” of [4]), but the general case will certainly require new developments. 

So the examples of associativity and distributivity prove to be rather similar although 

distributivity requires much more sophisticated algebraic treatment because it does not 

preserve the size of the terms. Moreover, the fact that the associativity identity is syn- 

tactically symmetric enables to automatically convert one-sided results into two-sided 

ones, what obviously fails in the case of distributivity. But in both cases the crucial 

point for proving that some given relations constitute an exhaustive list of generators 

for all relations between the involved operators is the possibility of associating to every 

term a canonical sequence such that the associated operator constructs this term from 

some uniform starting term. More precisely, we use the existence, for each pair of 

terms (P,P’) in F(X), of a canonical sequence such that the associated operator maps 

some term where P occurs into the term obtained by replacing P by P’. 
As a final remark, let us observe that the (true) fact that Oa=dO/3 implies c1=& /3 

could be established following the scheme sketched here for distributivity. Therefore, 

the result of Proposition 2.4 could also be obtained by only using the sequences xl&P) 

and then applying the above implication. 

4. The coherence of the complement in the general case 

The previous approach applies of course to the case of any identity, or even of any set 

of identities. In the latter case, one just has to introduce as many elementary operators 
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as different involved identities. Similarly, if several operators are used one can still use 

the same analysis, but it will be necessary to take into account not only the position 

where an identity is applied to a term but also the name of the operators occurring 

at each node of the tree between the root and the considered position. Practically, 

this entails such a combinatorial complexity for the corresponding geometric relations 

that the algebraic study of the associated monoid might turn to be intractable in most 

cases (but computers could be used to systematically verify conditions like complement 

coherence). 

We shall just consider here the case of one identity involving one binary operation, a 

direct generalization of the cases of associativity and left distributivity. Such an identity 

has the generic form 

F(X, Y,. ..) = G(X, Y ,._. ), 

where F and G are fixed terms in Y(C). Like previously, we introduce the oper- 

ator !ZJ that maps every term with the form F(P, Q,. . .) to the corresponding term 

G(P,Q,. . .). To guarantee that f1~ as well as its inverse are functional, we have to 

assume that the same variables occur in F and G. This hypothesis, however, can 

be dropped when sZ$ is introduced directly on the identities using unification like in 

[31. 
We look for the relations satisfied by the operators a,(x) for x in s. Of course, 

we cannot assume anything for the specific relations, but we still have the two types 

of general relations met previously. The relations for nonoverlapping subterms are 

always 

L?y(zOx - zly) = &(zly * Ax). 

The relations for strictly nested subterms take the form 

szy(zsx - ZSlX * . . . - zspx - z) = Qf(Z - zt1x - . . . * ztqx), (9) 

where s is any point in the support of the term F, ~1, . . ., sp are the other points 

in the support of F where the variable 2 occurring at s again occurs (if any), and 

tl, . . ., tq are the points in the support of G where 2’ occurs. We assume that some 

ordering on the set S has been fixed. The choice of this ordering is not essential since 

distinct points in the support of a term F are orthogonal, and therefore the various 

relations (s) we could write are equivalent owing to relations (I). In the above sit- 

uation we say that the points sr, . . ., sp are the companions of s with respect to 3, 

and that the points tl, . . ., tq are the cocompanions of s. For instance, in the case of 

left distributivity, the point 0 has no companion, but it admits 00 and 10 as cocom- 

panions. 
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By construction, the above relations are associated with the partial complement C’ 

defined by 

Cd4 Y) = 

E if x and y are equal, 

X if x and y are orthogonal, 

xsiz * . . . * xs*z - x if y is xsz for some s in the support 

of F and sl, . . ., sp are the compani- 

ons of s with respect to 9, 

ytiz * ... - ytqz if x is ysz for some s in the support 

of F and tl, . . . . tq are the cocomp- 

anions of s with respect to 9. 

Definition The point s is critical for the identity F = G ifs is nonvoid and is a strict 

prefix of some point in the support of the term F. 

The missing relations in the list above, and therefore the missing cases in the above 

complement, correspond to pairs (x,xs) where s is critical for 9. In the cases of 

associativity and left distributivity, the term F is X * (Y *Z), and 1 is the only critical 

point. 

In the previous cases, the existence of the right complement and the coherence pro 

perty of this complement turned out to be crucial. We wish here to point out that a 

large part of this coherence property follows from its very definition. This results in 

a more simple criterion for proving full coherence by means of a reduced number of 

verifications. We say that a mapping f of S2 into S’ is prejix-compatible if f (zx,zy) 

is always equal to zf (x, y). The mapping C’ is obviously prefix-compatible, as well as 

the complements Cd, C, or CgO previously considered. Actually, every complement 

extending C’ arising from the choice of an additional relation for each critical point 

will be prefix-compatible. 

Proposition 4.1. Assume that C is a prefix-compatible complement extending the 

mapping C,. Let E+ be the congruence on S* associated with C, and 9(x, y,z) 
stand for 

c*(w,Y),c(z,x)) =+ c*(c(x,z>,c(y,z)). 

Then C is coherent if and only if the relations 9(x, y, A), .%( y, A,x) and B(A,x, y ) 

hold when x is critical for 9 and either x is orthogonal to y or x is a strict prefix 

of Y. 

Proof. We shall prove the conjunction of 9(x, y,z), W( y,z,x) and 93(z,x, y) for ev- 

ery triple (x, y,z) in S3, using an exhaustive review of all possible cases. By prefix- 

compatibility we may assume that the greatest common prefix of x, y and z is A, and 

by symmetry we may choose the ordering of x, y, z as we wish. Also observe that 

when two points, say, for instance x and y, play symmetric roles it is sufficient to 
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establish the relations W(x, y,z) and 59(z,x, y) since the last relation W(y,z,x) is an 

instance of the first one. 

Case 1. Two points are equal. We may assume x = y, and we obtain 

C’(C(x, Y>, my)) = C*(E, C(z,x)) = E 

= c*(c(x,z),c(v)) = c*(c(v), C(Y,Z>>, 

c*(c(w), ccY,x>) = C’(C(z,x>, 6) = C(w) = C(z, y) 

= C'(W,Y),E) = c*(c(z,y),c(x,y)), 

which is enough by the last remark above. 

Case 2. One point is orthogonal to the greatest common prefix of the other ones. We 

may assume that z is orthogonal to the common prefix z’ of x and y. The hypothesis 

that C is prefix-compatible implies that each factor in C(x, y) and C(y,x) begins with z’ 

and therefore that z is orthogonal to each such factor. One obtains 

c*(c(x,Y),w,Y)) = c*(w,Y),z) = C(X,Y) 

= c*(x,Y) = C’(W,z), C(Y,Z)>, 

C’(C(z,x), C(Y,X)), = c*cz, C(Y,X)> = z 

= C’(Z,C(X,Y)) = c*(c(z,Y),c(x,Y)). 

Case 3. One point is a prefix of the other ones. We may assume that z is a prefix 

of the greatest common prefix z’ of x and y. By prefix-compatibility we may assume 

z = A. 

Case 3.1. The points x and y are not critical for 4. There exists unique points s 

and t in the support of F such that x is SX’ and y is ty’. Let sr, . . ., sp (resp. tr, 

. . .) tq) be the companions of s (resp. of t), and si, . . ., sl,, (resp. ti, . . ., ti,) be the 

cocompanions of s (resp. of t). 

Case 3.1 .l. The points s and t coincide. For 9(x, y,z) we have (because s is or- 

thogonal to each s, ) 

c*(w, y), C(z,x>) = c*(sc(x’, y'), C(A,sx’>> 

= c*(sc(x’, y’),s,x’ - . . . * spx’ * A) 

= c*(sc(x’, y’), A) 

= s; C(x’, y’) - . . . * s/,, C’(x’, y’) 

= c*(six’ . . . . - S;,X’,S:y’ - . . . - sb,y’) 

= c*(c(sx’, A), C(v’,n)> = c*(c(x,z>, C(y,z)), 
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while for W(z, x, y) we find 

c*(c(z,x), C(y,x)) = C’(C(A,sx’), C(sy’,sx’)) 

= c*(s]x’ * . . * s/J’ * A,sC(y’,x’)) 

= qx’ . . . . * spx’ * c*(A,sc(y’,x’)) 

= s,x’ . . . . * spx’ * qC(y’,x’) - . . . - s&(y’,x’) * ‘4 

3 qx’ - spz(y’,x’) * . . . * spx’ - s&(y’,x’) - A. 

Then C*(C(z, y), C(x, y)) leads to a similar formula where siy’ . siC(x’, y’) replaces 

six’ * siC(y’,x’), and because these sequences are pairwise =+-equivalent 9(z,x,y) 

follows. 

Case 3.1.2. The point s is a companion of the point t. Assume that s is tj. 

C’(C(x, y), C(z, y)) = c*(x, C(A, y)) = C(sx’, t1y’ - . . . tqy’ * A) 

= c*(sc(x’, y’), A) 

= s{C(x’,y’) * . ‘. * s;,c(x’,y’) 

= (I*(+’ . . . . S;,X’)t;y’ . . . . . t;,> 

= c*(w,~),c(Y,~)) = c*(c(x,z),c(y,z)) 
C*(C(Z,X), C(_Y,X)) = C*(C(A, tjX')j C(tY', tjX')) = C*(C(A, tjX'), ty), 

E tp’ . . . . . f,X’ . . . . . tq*’ . ‘4 

3 C*(C(A, ty), tjX’) = C*(C(A, ty’), C(tjX’, ty’)) 

= c*(c(z, Y), ax, VI). 

Case 3.1.3 The point s is distinct from t and its companions. Because the point s is 

orthogonal to each of tl, . . . , tq, and the points si and t,! are pairwise orthogonal, one 

has 

c*(c(x, y), C(z, y)) = c*(x, C(A, y)) = C(sx’, t1y’ - . . . tqy’ - A) 

= C(sx’, A) = six’ - . . . * Slp’X’ 

= c*(s{x’ . . . . . +‘,t;y’ . . . . . t;,> 

= c*(C(x>~),C(Y,~)) = c*(c(~,z),c(y,z)), 

c*(c(z,x),c(y,x) = c*(c(n,sx’),C(ty’,SX’)) 

= c*(s,x’ * . . . * spx’ f A, ty’) 

= qx’ . . . . - spxf - t,y’ - . . . * tqy’ - A, 

and because the points si and 9 are pairwise distinct and therefore orthogonal the factors 

six’ and tjy’ above can be permuted, so that the above expression for C*(C(z,x), C(y,x)) 

is r-equivalent to the similar one obtained from C*(C(z, y), C(x, y)). This finishes 

Case 3.1. 
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Case 3.2 At least one of x, y is critical for 9. We assume that the point x is 

critical. Then no general argument works and a specific verification is needed for the 

remaining choices of y. We may assume that y is not a prefix of X, for, in the latter 

case, y has to be critical as well and we can exchange x and y. So it remains to 

consider the case of y being orthogonal to x, and the case of x being a strict prefix 

of y. 0 

The examples of associativity and left distributivity suggest that further reductions 

in the number of cases could appear. In particular, for every critical point x as above 

there must exist a &rite set of points A, such that the desired equivalences hold for 

any y whenever they hold for y in A,. The reason is that, for y large enough, the 

equalities 

C(x, yz) = C(x, y) and C( yz,x) = C( y,x)z 

hold for every z. For instance, in the cases of associativity and distributivity one can 

take for Al the set (0, 10, 1 1, 1 10, Ill). We leave the question of giving a uniform 

definition of such sets A, open in the general case. 
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